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SUMMARY 
A new monotonic scheme for the approximation of steady scalar transport is formulated and implemented 
within a collocated finite-volume/pressure-correction algorithm for general turbulent flows in complex 
geometries. The scheme is essentially a monotonic implementation of the quadratic QUICK interpolation 
and uses a continuous and compact limiter to secure monotonicity. The principal purpose is to allow an 
accurate and fully bounded, hence stable, approximation of turbulence convection in the context of 
two-equation eddy viscosity and Reynolds stress transport modelling of two- and three-dimensional flows, 
both subsonic and transonic. Among other benefits, this capability permits an assessment to be made of 
the adequacy of approximating turbulence convection with first-order upwind schemes in conjunction with 
higher-order formulations for mean-flow properties-a widespread practice. The performance characteris- 
tics of the bounded scheme are illustrated by reference to computations for scalar transport, for a transonic 
flow in a Lava1 nozzle, for one separated laminar flow and for two separated turbulent flows computed 
with a non-linear RNG model and full Reynolds stress closure. 
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1. INTRODUCTION 

The accuracy with which transport processes are approximated numerically is of crucial 
importance in assessing the predictive realism of mathematical models which represent physical 
processes, particularly those associated with turbulence in high-Reynolds-number and high- 
Mach-number flows. Advection usually poses the biggest problems, since this process provokes 
or is associated with steep property gradients and thus raises the need for high-accuracy 
approximation schemes. 

Because advection is represented by a first-order derivative, its approximation by a first-order 
numerical scheme can be argued to be both appropriate and consistent on physical as well as 
mathematical grounds. Indeed, the essential validity of this argument is reflected, among others, 
by the unconditional boundedness of the first-order upwind scheme, due to the absence of 
parasitic components in the resulting numerical solution. However, this scheme is generally 
unacceptable on grounds of accuracy, unless extremely fine grids are used, since it introduces a 
high level of artificial second-order diffusion which tends to seriously erode property gradients 
in the same way as physical diffusion does. 

The use of higher-order approximations is the route most frequently taken in efforts to increase 
accuracy. However, schemes of order two and above, particularly symmetric ones, can provoke 
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spurious oscillations when the Peclet number is high in combination with steep gradients of the 
flow properties. Such oscillations are not merely optical defects but can have seriously deleterious 
or even catastrophic effects on the iterative stability and convergence properties of coupled 
systems. This is particularly the case when transport equations are solved for turbulence quantities, 
such as turbulence energy, its rate of dissipation or normal Reynolds stresses, for which negative 
values arising from oscillations can lead to negative diffusive transport and hence instability. 

The tendency towards oscillation may be counteracted, in principle, by adding to an oscillatory 
scheme a component which introduces a bias towards upstream flow conditions or strengthens 
the bias which may already be an inherent feature of the scheme. This can be effected either 
explicitly, by the addition of an artificial diffusion fragment to the advective flux returned by 
the basic scheme (e.g. Jameson et al.’), or implicitly, through an increase in the contribution or 
weight of values residing at the upstream nodes of the approximation stencil (e.g. Warming and 
Beam’). If, as is usually the case, the strength of the oscillation-damping mechanism is decided 
upon by an a priori choice of weighting factors or coefficients, then the resulting composite 
scheme will not, in general, be monotonic. To achieve monotonicity, upstream biasing must be 
controlled by the oscillatory features of the solution, i.e. the scheme must be non-linear. 

Early proposals for using non-linear limiters, sensitized to the ratio of consecutive gradients 
of the numerical solution, were made by Boris and B ~ o k ~ , ~  and van Leer.’-’ It was not until 
1983, however, that Harten’ injected formal mathematical rigour into the subject by proposing 
the total variation diminishing (TVD) concept as the criterion for developing high-resolution 
convection schemes which combine accuracy with monotonicity and entropy preservation. The 
rationale is quite simple, in principle, and has been stated by reference to general conservation 
laws by Sweby’ as follows: 

Given a basic scheme which preserues second-order accuracy in space and time, but 
which is unbounded, an appropriate limiter is introduced which diminishes the oscilla- 
tion-provoking, antidifusive truncation error on the basis of the TVD constraint. 

Within the framework of an explicit time-marching solution, any second-order-accurate TVD 
scheme, both in time and space, may be constructed by linearly blending the Lax-Wendroff” 
and Warming-Beam2 schemes in conjunction with a ‘smart’ slope limiter which switches off the 
antidiffusive flux when a local extremum (an oscillation) is detected. Different schemes arise 
through different limiter forms and Sweby’ has presented a general framework, in terms of a 
TVD diagram, which encompasses a wide range of limiters, including those of van Leer,’ 
Chakravarthy and Osher” and Roe.” If, on the other hand, interest is focused on the steady 
state only, it is possible to re-interpret Sweby’s TVD diagram in terms of the normalized uariable 
diagram (NVD) proposed by Leonard.’ Using this NV diagram and following Sweby’s rationale, 
Leonard’’ and Gaskell and LauI4 have formulated the SHARP and SMART schemes, respec- 
tively, both being monotonic implementations of Leonard’s third-order QUICK scheme.’ In 
essence, both formulations switch between QUICK and lower-order schemes depending upon the 
local value of the ratio of gradients used to identify the presence of an extremum. Algorithmically, 
both schemes involve the use of several conditional statements which give rise to high 
computational expense, particularly on vector machines. Tamamidis and Assanis l6 reported, for 
example, that the CPU time required by SHARP exceeded that needed by QUICK by a factor 
of 6.5 when both were applied to a simple scalar transport problem on a 100 x 100 grid. 

In this paper, a continuous and highly compact QUICK-based limiter is proposed and 
implemented within a general non-orthogonal finite-volume algorithm l 7  for calculating 2 D  and 
3D turbulent incompressible and compressible flows. The scheme typically requires only 20% 
more CPU time than QUICK. The performance of the limiter-identified by the acronym 



UPSTREAM MONOTONIC INTERPOLATION FOR SCALAR TRANSPORT 529 

UMlST (Upstream Monotonic Interpolation for Scalar Transpor t t i s  examined by reference to 
solutions for several flow problems, including scalar advection, transonic inviscid flow, one 
separated laminar flow and two separated turbulent flows, one behind a backward-facing step 
and the other over a high-lift aerofoil. In the last two flows, turbulence is modelled either by a 
non-linear eddy-viscosity form" of the RNG model19 or by the second-moment closure of 
Gibson and Launder." The use of such complex models in the present context reflects the 
authors' principal interest in turbulence modelling of multidimensional separated flows. Hence, 
the thrust of the present numerical effort is directed towards securing uniformly high accuracy, 
iterative stability and efficiency for all equations solved within a Reynolds-averaged procedure 
which incorporates the most general turbulence closures available. 

One specific advantage of the capability arising from the above combination is that the benefits 
derived from approximating turbulence convection accurately in complex conditions can be 
investigated. It is generally assumed that the solution of these equations is rather insensitive to 
convection because of the strong dominance of source-like terms. This assumption has been 
widely used as a justification for approximating turbulence convection with first-order schemes 
in combination with higher-order approximations for mean-flow convection. 

2. MATHEMATICAL FORMULATION 

2.1. Basic TVD concepts 

The construction of any numerical scheme required to be monotonicity-preserving rests on 
two general principles. 

1. No new local extrema must be created. 
2. The value of an existing local minimum must be non-decreasing and that of a local 

maximum must be non-increasing. 

These principles can be described formally by defining the total variation (TV) of a set of 
discrete data such as that shown in Figure 1 ( i  = 1 to 5 ) :  

TV(4) 3 162 - 411 + 143 - 4 2 1  i- 144 - 431 i- 14s - 441 = I 4 3  - 411 + 143 - 4 5 1 .  (1) 

For monotonicity to be satisfied, this total variation must not increase. 

m(4) Ida - 411 + I& - hI + 144 - &I+ 14s - 4.1 
= I & - ~ ~ I ~ I ~ - ~ ~ I  

Figure 1. Example of discrete data set illustrating TV property 
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Consider the spatially one-dimensional scalar conservation law 

a4 a4 - + a - = o ,  a > 0 .  
at ax 

The solution is said to be TVD8 if 

TV(@' + I )  ,< TV(@'). 

@ + I  = &'-Ci- l /2Ai- l /2dn + Di+1/2Ai+1/2@* 

(3) 

A general discrete approximation of the conservation law (2) is 

(4) 

in which A is the central-difference operator and C and D are scheme-specific 'influence 
coefficients'. In terms of form (4), conditions sufficient to secure inequality (3) are 

Ci+l/2 2 0, Di+1/2 2 0, Ci+l/z + Di+1/2 G 1. (5) 

Any time-marching scheme approximating the convective transport of a scalar property C#J may 
generally be written as the sum of a diffusive first-order upwind term and a diffusion- 
compensating 'antidiffusive' term, the latter designed to achieve high accuracy: 

first-order upwinding antiduffusive flux 

where 

v = aAt/Ax, ri+l/2 = Ai-l/24"/Ai+l/24". (7) 

The choice of cp(r) dictates the order of the scheme and its boundedness properties. Second-order 
accuracy may, for example, be attained by the choice 

which represents a weighted linear average of the Lax-Wendroff scheme" ('1') and the 
Warming-Beam scheme2 ('r'). While this approximation is not unconditionally bounded (TVD), 
Sweby' has shown that a TVD form arises from the constraint 

cp(r) = min(2r, 2), r > 0, cp(r) = 0, r < 0. (9) 

Hence, any form of equation (6) for which cp(r) lies in the shaded area of Figure 2 is bounded. 
A particularly advantageous route through the shaded region of Figure 2, identified by the bold 
line, is described by Sweby's '@-limiter' 

cp(r), = max[O, min(@r, l), min(r, a)], (10) 

where 1 < @ < 2. For @ = 1, cp(r), can be described by the 'minmod' function, i.e. &), = 
minmod(1, r), with minmod defined as 

(1 1) minmod(x, y )  = sgn(x) max[O, min(lx1, sgn(x)y)]. 
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Figure 2. Range of boundedness-preserving limiter for monotonic blend of Lax-Wendroff and Warming-Beam schemes 

For Q, = 2, the ‘superbee’ limiter of Roe” is recovered. This particular form of (10) obeys the 
symmetry condition: 

C p ( 4  = v ( 1 / 4 9  (12) 

which ensures that the forward and backward gradients are treated in the same manner-a 
useful condition, as will transpire later. 

2.2. The MUSCL approach 

In the context of an iterative solution for statistically steady flows within the finite-volume 
framework, the essential task is to approximate the volume-face fluxes, combining accuracy with 
boundedness. For a one-dimensional ‘volume’ and positive velocity, schemes of up to third-order 
accuracy may be constructed by approximating, say, the face value 4f in Figure 3 by the upwind 

a-1 L -- i _I i + l  i+2 

Figure 3. Onedimensional finite volume and associated nodal stencil used to formulate MUSCL limiter for face ‘T 
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value 4u corrected by an ‘antidiffusive’ gradient involving c$D, 4c and &,. This is one key feature 
of van Leer’s MUSCL scheme. A general form of such a scheme may be written as 

(13) 

where the numerical parameter ‘K’  controls the order of the scheme. Unbounded forms 
corresponding to central differencing (CD), second-order (linear) upwind differencing (LUDS) 
and Leonard’s quadratic upstream-weighted differencing (QUICK) arise by setting K = 1, - 1 
and 0.5 respectively. 

The approach to constructing bounded forms leans on that outlined in Section 2.1. Thus, to 
render equation (13) monotonic, whilst retaining a five-point stencil (for lD), a slope limiter rp(r,) 
is introduced in a manner analogous to that in equation (6): 

4, = 4c + aC(1 + K H ~ D  - 4c) + (1 - K K ~ C  - 4d1, 

dr = 4 c  + $C(1 + K)(P(Tf)(4D - 4c) + (1 - K)(P(l/rfH4C - 4”)l. (14) 

For further consideration it is expedient to replace the dimensional convected property 4 by 
the normalized variable 6 defined asI3 

- 4 - 4 u  4 =-. 
4 D  - 4 U  

With this definition equation (14) may be written as 

Since 

equation (16) may be simplified to 

If, next, a symmetric limiter satisfying condition (12) is chosen, then equation (18) becomes 

which is evidently independent of the parameter K. Substitution of equation (17) into equation 
(9) allows the TVD constraints to be expressed as 

4, < 1, & < 2&, Jf 2 &, for0 < JC < 1, 
(20) & = & for$, < O o r &  2 1. 

It will be recalled that Sweby’s TVD condition, taken in conjunction with the Lax-Wendrofi/ 
Warming-Beam blend, was represented by the shaded area in Figure 2. An analogous graphical 
representation can readily be derived using condition (20) together with form (13), the latter 
written for the special case of a weighted linear average of the central-differencing scheme (K = 1) 
and the second-order upwind scheme (K = - l), i.e. 

$f = (1 - a M l +  4,) + a +&, o < a < 1. (21) -- 
CD LUDS 
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D 

i c  
-1 

Figure 4. Sweby’s @-limiter within NV diagram 

This graphical representation is given in Figure 4, and the shaded area is again the range in which 
the composite second-order scheme is fully bounded. Moreover, the bold line in Figure 4 
represents Sweby’s ‘@-limiter’ as given by equation (10). 

2.3. The UMIST limiter 

By far the most popular higher-order convection scheme used for turbulent-flow calculations 
is the QUICK approximation of Leonard,Is which for a uniform grid is third-order accurate. 
While this scheme is upstream-biased, it is not bounded, giving rise to oscillations at Peclet 
numbers higher than Pe = 2. A monotonic version of QUICK satisfying the constraints (9) and 
(20) may be achieved through the limiter 

(22) cp(r) = max[O, min(2r, 0.75 + 0.25r,2)]. 

QUICK 

This limiter is not symmetric, however, and a simplification to the form (19), with consequent 
reduction in the number of arithmetic operations, is not possible. An alternative symmetric 
limiter form is 

cp(r) = max[O, min(2r, 025, + 0.75r, 0.75 + 0*25r, 2)], (23) 

QUICK 

which in terms of equation (19) is equivalent to 

(24) 

- -  0.756, 4f = dc + 0.5 max + -, 0-75 + 
1 - 4c  

QUICK 
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0.5 S/p 
-I I/ / 
J /// 

l ~ ’ l l l ~ l l l l ~ l l l l ~  i c  
-1.0 -0.5 0.5 1 .o 1.5 2.0 

This is termed here the UMIST limiter. The TVD and NV diagrams corresponding to equations 
(23) and (24) are shown in Figure 5. 

2.4. Multidimensional implementation 

written in terms of tensor notation applicable to the general co-ordinate system < j  as 
The partial differential equations governing the transport of any scalar quantity 4 can be 
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Figure 6. Two-dimensional non-orthogonal finite volume and stencil used for implementation of UMlST limiter 

Here the Jacobian matrix J, the contravariant velocity vector Uj and the fourth-order tensor 
qi i  are given, respectively, by 

where 
To simplify the following consideration without loss of generality, it is expedient to focus on 

the 2D situation only. The 3D extension is quite straightforward and introduces no novel aspects. 
Intergration of equation (25)  over the finite volume shown in Figure 6 and application of the 
Gauss divergence theorem in conjunction with central differencing for diffusion yields a balance 
of the face fluxes and volume-integrated net source. The face values of 4 are approximated by 
the first-order upwind scheme in conjunction with an appropriate antidiffusive flux implemented 
via a 'deferred correction' source term ST which is controlled by the UMIST limiter. Finally, 
the sources are discretized via a single-point quadrature and linearized as 

are the elements of the inverse Jacobian matrix J - ' .  

with Sp being so chosen as to be unconditionally negative. Insertion of the above approximation 
into the volume-integrated equation gives 

where 
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+ max[(pU),,O], 
W 

- max[(pU),, 01, 

Ap = A, + A, + A N  + As - Sp 

and 

in which cp(r) is defined as in (24), 

and 

- 4 P - 4 E  + 4 p - 4 w  
4 E - b P ’  4 P  - 4 E  ’ 4 p - 4 w  ’ 4 w  - 4 P ’  

- 4 p - h  4 P  - 4s 
4 N  - 4 P ’  4 P  - 4 N  ’ 4 P  - 4 s  ’ 4 s  - 4 P  

r, = 4 w  - 4 w w  r,‘ = - ~ E - ~ E E  re = re = 

(33) 
r, =-. + 4 s - 4 s s  r, = ~ 

- 4 N - 4 ”  rn = r,’ = ____ 

3. NUMERICAL FRAMEWORK 

The approximation scheme outlined in Section 2 has been implemented within the general flow 
algorithm ‘STREAM’.’ The procedure is applicable to two- and three-dimensional flows, using 
a non-orthogonal, fully collocated, structured finite-volume arrangement. In its standard mode 
of operation the procedure iterates the solution towards a steady state by means of a pressure- 
correction algorithm for all Mach numbers, including transonic conditions. Turbulence is 
represented optionally by way of linear and non-linear, standard and RNG k--E model variants 
or full second-moment closure. Various hybrid approaches have been realized and tested, 
including such combining Reynolds-stress closure in the inner field with low-Reynolds-number 
k--E models in the semi-viscous near-wall region, both under 2D and 3D conditions. 

In one application to follow, the flow is transonic and thus described by a mixed hyperbolic/ 
elliptic conservation law. For this particular case the UMIST limiter has been incorporated 
into a cell-centred, explicit time-marching scheme which determines the density and mass flux 
in a point-coupled fashion by using the characteristic variables; the latter arise upon diagonaliza- 
tion of the Jacobian coefficient matrix premultiplying the flux vector in the convection term.” 
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4. APPLICATIONS 

4.1. Overview of test cases 

2.3, computational results are included here for the following five test cases: 
In order to convey a broad view of the characteristics of the scheme documented in Section 

(i) inviscid flow in a 1D Laval nozzle; 
(ii) convective and diffusive transport of a scalar property by a rotational velocity field22; 

(iii) laminar flow through axisymmetric ~ t e n o s i s ~ ~ ;  
(iv) turbulent flow past a backward-facing step with the upper wall inclined at 6°24; 
(v) turbulent flow over the ONERA-A aerofoil at 13.3” in~idence.~’ 

The application of a ‘minmod’ limiter similar to UMIST to further cases, among them a 
three-dimensional turbulent flow in a circular-sectioned bend, is documented in Reference 26. 

It ought to be pointed out that the main intention of the present study is to identify the 
sensitivity of predictions to the choice of the convection scheme, particularly that applied to the 
turbulence equations in the fourth and fifth cases above. Therefore, physical issues, in particular 
the influence of turbulence-model variants in conjunction with different near-wall treatments, 
are not addressed in detail. The predictive performance of a range of turbulence models for the 
cases considered herein is examined in other 

4.2. InviscidfIow in a Luval nozzle 

This first application is intended to convey the capabilities of the UMIST limiter in the 
geometrically and physically simple but numerically demanding case of a normal shock provoked 
in a convergent-divergent nozzle by an elevated back pressure acting on a supersonic flow. 
Conventional linear schemes usually rely on explicit diffusive fluxes or an implicit dissipative 
mechanism when required to resolve this discontinuity, and these almost invariably give rise 
either to excessive shock smearing or to oscillatory features at the edges of the shock. Here the 
principal challenge posed to any limiter is to reduce the dissipative contribution to the lowest 
possible level while eliminating artificial extrema. 

The area variation of the Laval nozzle chosen here is given by 

A(x)  = A,,  + (Ai - A,,)[(5 - x)/5]2, 0 < x < 5,  
A(x)  = A,, + (A, - A,,)[(5 - x)/5]2, 5 < x < 10, 

(34) 

where Ai, A,, and A, denote the cross-sectional areas at inlet, throat and outlet respectively. The 
area ratio Ai:At,:A, has been selected as 2: 1:2 and the exit pressure has been prescribed to be 
0.65 times the stagnation pressure, implying a normal shock at  the position x = 0.9. 

As explained briefly in Section 3, the numerical approach adopted here is different from that of 
other cases because of the mixed hyperbolic/elliptic nature of the conservation law. Thus the 
equations governing continuity and momentum were solved for density and mass flux in a 
point-coupled fashion and in terms of characteristic variables within a time-marching cell-centred 
scheme. A consequence of this approach is that the TVD condition is only strictly satisfied for 
the ‘locally frozen’ conservation law in which the ‘coefficients’ multiplying the vector of 
characteristic variables remain invariant during the forward time step.21 

Figure 7 compares distributions for Mach number and pressure, calculated using 100 nodes, 
with corresponding analytical solutions derived from 1D theory. As seen, the shock is very well 
resolved within two internodal intervals without any hint of oscillation. 
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Figure 7. Transonic Lava1 nozzle flow-pressure and Mach number variations 

4.3. Scalar advection by a rotational velocity jield 

The convective/diffusive transport of a scalar step across a Cartesian mesh by a rotational 
motion is a searching test of the quality of any convection scheme, particularly one formulated 
on the basis of one-dimensional considerations but applied to multidimensional transport. This 
is the issue on which the present application focuses. 

In terms of Cartesian co-ordinates the steady transport of a scalar in two-dimensional space 
is governed by the equation 

The particular test conditions chosen here are identical to those used in a test problem which 
was the focus of an IAHR workshop on convection schemes organized by Smith and Hutton” 
in 1982. These may be written as 

u = 2y(l - XZ), u = - 2x(1 - yZ), (36) 

with boundary conditions pertaining to (35) of 

4 = 1 - tanh(l0) forx = 1,0 < y < 1, 
4 = 1 - tanh (10) for x = - 1,O < y < 1, 

4 = 1 - tanh(l0) fory = 1, -1 < x < 1, (37) 
4 =  l+tanh[10(2x+ l)] f o r y = O , - l < x < O ,  

J4/Jy = 0 fory = 0,O < x < 1, 

for which 4 becomes 0 at x = k 1 and nearly 2 at the origin. Solutions have been obtained over 
a 40 x 20 grid for two Peclet numbers, namely 500 and lo6. For the former value the diffusive 
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Figure 8 Scalar transport by rotational velocity field-profiles of scalar property after 180" rotation 

process is relatively weak but still influential, while for the latter diffusion is negligible. Since 
there is no analytical solution in the presence of diffusion, reference solutions have been obtained 
with the UMIST limiter over a fine 300 x 150 grid and are assumed to represent the exact 
solutions against which coarse-grid solutions may be contrasted when the accuracy of alternative 
schemes are assessed. 

Solutions for 4 obtained with the first-order upwind scheme UDS, the quadratic scheme 
QUICK and the UMIST limiter are shown in Figures 8(a) and 8(b) for Pe = 500 and lo6 
respectively. In the case of Pe = 500, UMIST yields results very close to QUICK. However, at 
Pe = lo6, QUICK provokes under- and overshoots close to the region of steep +variation, 
x = 0.5. In contrast, UMIST returns a fully bounded solution, which indicates, however, that 
this has been achieved at the penalty of some smoothing at the lower and upper edges of the 
scalar step. The first-order upwind scheme UDS clearly returns an unacceptable erosion of the 
scalar gradients due to a high level of second-order diffusion provoked by the leading truncation 
error of this scheme. Similar conclusions can be drawn from the contour plots of 4 shown in 
Figures 9(a) and 9(b) for Pe = 500 and lo6 respectively. 

A comparison of CPU times required for the fine-grid computation is given in Table 1. As 
seen, the overheads associated with the implementation of the UMIST limiter are very modest, 
being of the order of 15% higher than the execution times required for QUICK. These overheads 
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Figure 9. Scalar transport by rotational velocity field&-contour plots of scalar property 
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Table I. Relative resource requirements of alternative convection schemes 

Convection 
scheme Iterations CPU time(s) Seconds per iteration CPU ratio 

Pe = 500  
UDS 202 29.967 0.1484 1 .Ooo 
QUICK 196 32.862 0.1677 1.130 
UMIST 196 37-827 0.1930 1.30 1 

UDS 
QUICK 
UMlST 

P e =  lo6 
95 13.997 0.1473 
89 15.010 0.1687 
89 17.364 0.1950 

1 ~Ooo 
1.072 
1.24 1 

are mainly attributable to the evaluation of the intrinsic MAX and MIN functions which are 
used by the limiter. 

4.4. Laminar fio w through axisymmetric stenosis 

While monotonic schemes are particularly advantageous when resolving very steep gradients 
such as shocks, scalar jumps and strong variations in turbulent quantities provoked by high 
rates of strains, they can also offer benefits in resolving the momentum field, particularly in 
elliptic flows in which shear layers are often highly skewed relative to the mesh lines. This case 
is intended to illustrate the performance of UMIST in a separated flow in which significant 
numerical errors can easily arise in the curved shear layer bordering a recirculation bubble. 

The geometry considered here is a sinusoidal constriction in a circular pipe, the radius of 
which is described by 

X 
rwa,, = R 1 - - 1 + cos - , -2  < - < 2, { 26R [ (;:)I} R 

where R = 0.945 cm and 6 = 2R/3. Calculations have been performed for Re, = 98 with a grid 
consisting of 70 x 30 lines. The same three schemes used for the previous test case have been 
used here too, with attention being focused on the sensitivity of the length and shape of the 
recirculation bubble to the numerical approximation. 

Solutions for the streamfunction contours are shown in Figure 10. It is seen that the 
reattachment positions returned by QUICK and its UMIST-limited variant are virtually 
identical and close to the experimental location reported by Young and Tsai.” Under laminar 
flow conditions the sensitivity of predicted flow features to the order of the convection scheme 
is often weak, but evidently this is not the case here, as is seen from the solution obtained with 
the upwind scheme, because of the relatively high Reynolds number. As a consequence the cell 
Peclet number is high and the contribution of artificial diffusion, which is controlled by the 
Peclet number, is strong. This sensitivity is of considerable importance in this case, since it 
implies that the closeness of the QUICK and UMIST solutions is a fair reflection of the quality 
of UMIST, particularly in respect of the low level of artificial diffusion it introduces as part of 
the limiting process. 
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4.5. Turbulent j low over a backward-facing step 

The authors' main interest is in computing complex turbulent flows with high-accuracy 
schemes, and it is particularly with the view to such computations that the UMIST limiter was 
formulated. The case considered herein is one of two turbulent flows in which the UMIST limiter 
has been used specifically to examine the sensitivity of the predicted solutions to the accuracy 
with which the convective transport of turbulence quantities is approximated. 

The geometry considered is a backward-facing step preceded by a parallel channel and 
followed by a diverging passage with the upper wall inclined at 6". The particular turbulence 
model adopted is a combination of the RNG k--E model of Yakhot et al." and the non-linear 
eddy-viscosity formulation of Speziale,'* the latter with the convective fragments of the so-called 
Oldroyd derivative neglected. This hybrid model is applicable to high-Re conditions only and 
has thus been implemented here in conjunction with log-law-based wall laws. This particular 
choice has been partly motivated by the outcome of a broader study on the performance of a 
range of modelling  practice^,^' which has shown that the present hybrid formulation yields mean- 
flow solutions which are close to those derived from much more elaborate second-moment 
closure. 

Results have been obtained with three numerical implementations. In one, both mean-flow 
and turbulence convection have been approximated with the upwind scheme; this variant is 
denoted by UDS + UDS. In the second, identified by QUICK + UDS, mean-flow convection 
was approximated with QUICK while turbulence convection was represented by the upwind 
scheme. Finally, in the third variant, QUICK for mean-flow convection was applied in 
conjunction with UMIST for turbulence quantities, a combination denoted by QUICK + 
UMIST. 
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Figure 12. Turbulent flow behind a backward-facing step in 6" channel-velocity profiles 
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Figure 13. Turbulent flow behind a backward-facing step in 6" channel-shear stress profiles 
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Figure 14. ONERA-A aerofoil-geometry and grid 
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Figure 16. Flow around ONERA-A aerofoildistribution of pressure coefficient along aerofoil surface 

Considered first are the streamfunction contours shown in Figure 11. The experimental value 
of the reattachment point is at x / H  = 8.2. As seen from the plotted contours, the solutions 
obtained with the QUICK + UDS and QUICK + UMIST combinations are virtually identical, 
with the reattachment point being in good agreement with the experimental observation. 
Similarly, differences between corresponding velocity profiles (Figure 12) and shear-stress profiles 
(Figure 13) are small. This result implies that the contribution of turbulence transport to the 
balance of processes dictating the level of turbulence is modest, in which case the numerical 
approximation of this process is of marginal importance. While this is consonant with the 
established view that turbulence processes are largely dictated by a balance between generative 
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Figure 18. Flow around ONERA-A aerofoil-shear stress profiles 

and destructive mechanisms, there are circumstances in which turbulence transport dominates. 
For example, Lien and Leschziner,26 using a limiter somewhat cruder than UMIST, reported 
an elevated sensitivity to turbulence convection in a 3D circular-sectioned bend in which 
secondary circulation gives rise to a high level of transverse convection of turbulence energy. 
Figures 11-13 also show, in agreement with observations made in the previous laminar case, 
that the solution is very sensitive to the approximation of mean-flow convection. Here too the 
recirculation length is smaller, the consequence being a more rapid momentum recovery in the 
wake region and corresponding differences in the velocity and stress variations. 

4.6. Turbulent flow around the ONERA-A aerofoil 

This fifth and final case is of much greater complexity than the previous flow in terms of both 
geometric complexity and mathematical elaboration in the turbulence closure. The aerofoil, at 
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13.3" incidence, is shown in Figure 14 together with the 178 x 66 C-mesh surrounding it. The 
calculations reported below have been made with the high-Re Reynolds-stress transport 
closure of Gibson and Launder2' in conjunction with the one-equation k-1 low-Re model of 
Wolf~htein,'~ the latter applied to the semi-viscous near-wall region. 

Solutions for skin friction, wall pressure, velocity and shear stress, obtained with different 
combinations of UDS, QUICK and UMIST for mean-flow and turbulence convection, are 
shown in Figures 15-18 respectively. A discussion of physical issues, contrasting the performance 
of two second-moment-closure variants with that of several eddy-viscosity models, may be found 
in Reference 28. Consistently with previous observations, the results bring out here again with 
stark clarity the importance of using a non-diffusive scheme for mean-flow convection. The use 
of UMIST for the convection of Reynolds stresses and turbulence dissipation, whilst permitting 
uniformly high accuracy to be maintained across all variables without deleterious consequences 
to stability, has only a marginal effect on the solution. Again, this reflects the relatively weak 
contribution of transport to the balance of processes in the stress equations-a fact reflected by 
the small differences observed in many plane 2D flows between differential and algebraic forms 
of second-moment closure. 

5. CONCLUSIONS 

A monotonic and compact second-order scheme based on the quadratic convection approxima- 
tion QUICK has been formulated and applied to a range of test cases, among them turbulent 
flows modelled with advanced closure practices. The scheme can be easily incorporated into any 
non-monotonic framework and secures accuracy and stability regardless of the nature of the 
transport equation solved. The outcome of the present study may be summarized as follows. 

1. The UMIST limiter returns, in most circumstances, solutions which are close to those of 
QUICK but without oscillatory features. This applies in particular to laminar flow 
conditions. Some smoothing is observed for scalar transport at very high Peclet 
numbers. Shocks are captured very crisply and without any oscillations. 

2. In turbulent flows, the UMIST limiter allows a problem-free higher-order discretiza- 
tion of turbulence convection to be achieved. 

3. In the turbulent cases examined, the approximation of turbulence convection is not, 
however, of material importance to the accuracy of the solutions. 

4. In contrast, the order of approximation of momentum and scalar transport is crucial. 
5. The resource overheads of UMIST are very low, of the order of 15% above those required 

for the non-monotonic QUICK approximation. 
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